【梵夏文学网,感情文学网,好词好句大全,美文摘抄,短篇美文,情感日志,睡前小故事,www.fanxia.cn】
当前位置: 分子生物学习笔记(1) > 正文

分子生物学习笔记(1)

专题: 读书 更文800字点赞 简友广场 每天写1000字 为梦发文 科研
作者:打工小博 来源:原文地址 时间:2022-05-04 17:45:54  阅读:163   网上投稿

有赞必回!


基本概念学习及复习:

  1. DpnI酶: 是一种限制性核酸酶,特异性切除甲基化的DNA链。被常常用于PCR后切除模板DNA。定点突变后,要区分原始DNA和突变DNA。DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经dam甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。

DpnI酶可用去去除模板质粒

  1. 表观遗传学
    表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等

  2. DNA 甲基化
    所谓DNA甲基化是指在DNA甲基化转移酶的作用下, 在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个 甲基基团。正常情况下,人类基因组“ 垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相 反,人类基因组中大小为100—1000 bp 左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56% 的人类基因组编码基因相关。人类基因组序列草图分析结果表明, 人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系。 由于DNA甲基化与人类发育和肿瘤疾病的密切关系, 特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基 化已经成为表观遗传学和表观基因组学的重要研究内容

  3. 组蛋白的乙酰化和去乙酰化
    组蛋白乙酰化与基因活化以及DNA复制相关,组蛋白的去乙酰化和基因的失活相关。乙酰化转移酶(HATs)主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与DNA损伤修复,还可作为DNA结合蛋白。去乙酰化酶家族则和染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡相关

  4. 非编码RNA
    功能性非编码RNA在基因表达中发挥重要的作用,按照它们的大小可分为长链非编码RNA和短链非编码RNA。长链非编码RNA在基因簇以至于整个染色体水平发挥顺式调节作用。在果蝇中调节“剂量补偿”的是roX RNA,该RNA还具有反式调节的作用,它和其它的蛋白共同构成MSL复合物,在雄性果蝇中调节X染色体活性。在哺乳动物中Xist RNA调节X染色体的失活,其具有特殊的模体可和一些蛋白共同作用实现X染色体的失活。Tsix RNA是Xist RNA的反义RNA,对Tsix起负调节作用,在X染色体随机失活中决定究竟哪条链失活。air RNA调节一个基因簇的表达,该基因簇含有3个调节生长的基因。长链RNA常在基因组中建立单等位基因表达模式,在核糖核蛋白复合物中充当催化中心,对染色质结构的改变发挥着重要的作用。

    短链RNA在基因组水平对基因表达进行调控,其可介导mRNA的降解,诱导染色质结构的改变,决定着细胞的分化命运,还对外源的核酸序列有降解作用以保护本身的基因组。常见的短链RNA为小干涉RNA(short interfering RNA, siRNA)和微小RNA(microRNA, miRNA),前者是RNA干扰的主要执行者,后者也参与RNA干扰但有自己独立的作用机制。

    非编码RNA对防止疾病发生有重要的作用。染色体着丝粒附近有大量的转座子,转座子可在染色体内部转座导致基因失活而引发多种疾病甚至癌症,然而在着丝粒区存在大量有活性的短链RNA,它们通过抑制转座子的转座而保护基因组的稳定性。在细胞分裂时,短链RNA异常将导致染色体无法在着丝粒处开始形成异染色质,细胞分裂异常,如果干细胞发生这种情况可能导致癌症的发生。siRNA 可在外来核酸的诱导下产生,通过RNA干扰清除外来的核酸,对预防传染病有重要的作用。RNA干扰已大量应用于疾病的研究为一些重大疾病的治疗带来了新的希望。
    非编码RNA不仅能对整个染色体进行活性调节,也可对单个基因活性进行调节,它们对基因组的稳定性、细胞分裂、个体发育都有重要的作用。RNA干扰是研究人类疾病的重要手段,通过其它物质调节RNA干扰的效果以及实现RNA干扰在特异的组织中发挥作用是未来RNA干扰的研究重点。

  5. 核酸外切酶
    :是一类从多核苷酸链的末端开始逐个降解核苷酸的酶。按照酶对底物二级结构的专一性,将其分为三类:①作用于单链的核酸外切酶,如大肠杆菌核酸外切酶I和大肠杆菌核酸外切酶Ⅶ。②作用于双链的核酸外切酶,如大肠杆菌核酸外切酶Ⅲ、噬菌体核酸外切酶和T7噬菌体基因Ⅵ核酸外切酶等。③既可作用于单链又可作用于双链的核酸外切酶,如Bal 核酸酶。

7.retron结构


1.png

  1. ChIP-seq
    ChIP-seq,指的是结合位点分析法,作为研究体内蛋白质与DNA相互作用。染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)也称结合位点分析法,是研究体内蛋白质与DNA相互作用的有力工具,通常用于转录因子结合位点或组蛋白特异性修饰位点的研究。

    将ChIP与第二代测序技术相结合的ChIP-Seq技术,能够高效地在全基因组范围内检测与组蛋白、转录因子等互作的DNA区段。ChIP-Seq的原理是:首先通过染色质免疫共沉淀技术(ChIP)特异性地富集目的蛋白结合的DNA片段,并对其进行纯化与文库构建;然后对富集得到的DNA片段进行高通量测序。研究人员通过将获得的数百万条序列标签精确定位到基因组上,从而获得全基因组范围内与组蛋白、转录因子等互作的DNA区段信息。

  2. 宏基因组(Metagenomics)
    宏基因组测序是指对微生物群体进行高通量测序,分析特定环境中微生物群体基因组成及功能、微生物群体的多样性与丰度,进而分析微生物与环境、微生物与宿主之间的关系,发现具有特定功能的基因。

    相关美文阅读: